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STABILITY OF FREE-CONVECTION BO"DARY-LAYER FLOWS 

By P h i l i p  R. Nachtsheim 

SUMMARY 

The s t a b i l i t y  of free-convection boundary-layer flows is inves t iga ted  by 
numerical in tegra t ion  of t h e  disturbance d i f f e r e n t i a l  equations. 
cu la t ions  a r e  car r ied  out f o r  Prandt l  numbers of 0.733 ( a i r )  and 6.7 (water) with 
and without temperature f luc tua t ions .  
consis t  of eigenvalues (phase veloci ty ,  wave number, and Reynolds number), eigen- 
functions,  and energy d i s t r i b u t i o n  curves f o r  n e u t r a l l y  s t a b l e  disturbances.  
Tabulations of t h e  bas ic  ve loc i ty  and temperature p r o f i l e s  f o r  a Prandt l  number 
of 6.7 a r e  a l s o  included. 

S t a b i l i t y  ca l -  

Results presented f o r  t hese  four  cases 

When temperature f luc tua t ions  are included, a mode of i n s t a b i l i t y  i s  found 
i n  which t h e  primary source of energy f o r  t h e  dis turbance motion arises f r o m  t h e  
in t e rac t ion  of buoyancy forces  with ve loc i ty  f luc tua t ions .  The present s t a b i l i t y  
r e s u l t s  are compared with ava i lab le  t h e o r e t i c a l  and experimental r e s u l t s .  

INTRODUCTION 

It i s  wel l  known t h a t  boundary-layer flows are unstable  under c e r t a i n  con- 
d i t i ons  i n  t h e  sense t h a t  a s m a l l  d is turbance imposed on t h e  bas ic  flow can grow 
i n d e f i n i t e l y  i n  time. This i n s t a b i l i t y  i s  r e l a t e d  t o  t h e  shearing motion of t h e  
bas ic  flow and existence of a mechanism for t r a n s f e r r i n g  energy from t h e  bas ic  
flow t o  t h e  disturbance motion v i a  t h e  Reynolds s t r e s s .  It i s  a l s o  wel l  known 
t h a t  a s t a t i c  f l u i d  i n  a g r a v i t a t i o n a l  f i e l d  i n  which a constant temperature 
gradient  i s  maintained i s  unstable  under c e r t a i n  conditions.  This thermal in- 
s t a b i l i t y  a r i s e s  when t h e  g rav i ty  vec tor  has a component p a r a l l e l  t o  t h e  tempera- 
t u r e  gradient .  In  t h i s  case a supply of energy f o r  t h e  disturbance flow comes 
from t h e  p o t e n t i a l  energy of t h e  f l u i d  p a r t i c l e s  i n  t h e  s t a t i c  configuration. 
Both of t hese  s t a b i l i t y  problems have received extensive, but separate,  t reat-  
ments i n  t h e  l i t e r a t u r e .  

The problem of t h e  s t a b i l i t y  of free-convection boundary-layer flows i s  an 
in t e re s t ing  combination of t h e  problems of boundary-layer s t a b i l i t y  and thermal 
s t a b i l i t y .  Since t h e  free-convection flow i s  a shearing motion, t h e  problem of 
i t s  s t a b i l i t y  contains a l l  t h e  features of t h e  boundary-layer s t a b i l i t y  problem. 
However, when a temperature dis turbance i s  imposed on t h e  free-convection 
boundary-layer flow, t h e  e s s e n t i a l  f e a t u r e  of t h e  thermal s t a b i l i t y  problem i s  
introduced, and the re  i s  a p o s s i b i l i t y  of t r a n s f e r r i n g  energy t o  t h e  disturbance 
flow i f  t h e r e  i s  a co r re l a t ion  between t h e  disturbance ve loc i ty  component along 



t h e  p l a t e  and t h e  disturbance temperature gradient  along t h e  p la te .  

The determination of the  s t a b i l i t y  cha rac t e r i s t i c s  of a given f r ee -  
convect ion boundary-layer f low requi res  t h e  determination of t h e  eigenvalues 
occurring i n  a system of complex d i f f e r e n t i a l  equations of s i x t h  order. This 
system of equations d i f fe rs  from t h e  well-known Orr-Sommerfeld fourth-order 
equation, which appl ies  t o  ordinary boundary-layer flows i n  that t h e  s ixth-order  
system takes  account of the  in t e r r ac t ion  of t h e  g rav i ty  force  with dens i ty  f l u c -  
t u a t  ions. 

The e f f ec t  of temperature f luc tua t ions  has been neglected i n  a l l  previous 
inves t iga t ions  of t h e  s t a b i l i t y  of free-convection boundary-layer flows. Refer- 
ence 1 showed that  t h e  neglect of temperature f luc tua t ions  i s  j u s t i f i e d  if  t h e  
Reynolds number i s  s u f f i c i e n t l y  large; however, t h e  Reynolds numbers at which 
f i n i t e  disturbances have been observed experimentally i n  f ree-convect ion flows 
a r e  not extremely l a rge  numbers. 

With t h e  neglect of temperature f luc tua t ions  t h e  disturbance d i f f e r e n t i a l  
equation f o r  free-convection boundary-layer flows reduces t o  t h e  Orr-Sommerfeld 
equation. The asymptotic techniques that were developed t o  solve t h e  Orr- 
Sommerfeld equation were used i n  references 1 and 2 t o  solve t h e  free-convection 
b oundary-layer s t  2,b ilit y problem. 

In  asymptotic methods, t h e  c r i t i c a l  layer plays a c e n t r a l  r o l e  i n  t h e  anal-  
y s i s .  The c r i t i c a l  l aye r  i s  located a t  t h a t  point  i n  t h e  boundary l aye r  where 
t h e  phase ve loc i ty  of an assumed disturbance wave matches t h e  ve loc i ty  of t h e  
bas ic  flow. For conventional ve loc i ty  p ro f i l e s ,  l i n e a r l y  independent so lu t ions  
of t h e  Orr-Sommerfeld equation a r e  of ten  obtained i n  t h e  form of expansions about 
t h e  c r i t i c a l  layer .  Since t h e  ve loc i ty  i n  t h e  free-convection flow i s  zero a t  
t h e  p l a t e  and at l a rge  dis tances  from t h e  p la te ,  each value of ve loc i ty  i s  a t -  
t a ined  twice, once when t h e  ve loc i ty  i s  increasing and once when t h e  ve loc i ty  i s  
decreasing; hence, f o r  t hese  p r o f i l e s  t h e r e  will be two c r i t i c a l  l ayers  o r  none. 
I n  references 1 and 2, account i s  taken of t h e  presence of two c r i t i c a l  l ayers  
by obtaining so lu t ions  t o  t h e  d i f f e r e n t i a l  equation by means of expansions about 
each c r i t i c a l  layer .  However, minimum c r i t i c a l  Reynolds numbers, t h a t  is, t h e  
Reynolds numbers below which a l l  disturbances should be damped, were obtained 
t h a t  were g rea t e r  t han  t h e  Reynolds numbers at which f i n i t e  disturbances were 
observed experimentally ( r e f s .  1 and 2 ) .  

I n  order t o  avoid t h e  problem of expanding so lu t ions  about two c r i t i c a l  
layers ,  other  inves t iga tors  have used d i r e c t  numerical methods t o  solve t h e  O r r -  
Somerfe ld  equation. A numerical method t o  determine t h e  s t a b i l i t y  charac te r i s -  
t i c s  of a t ransverse  ve loc i ty  p r o f i l e  near t h e  s tagnat ion point of a sweptback 
wing was developed i n  references 3 and 4. T h i s  method cons is t s  e s s e n t i a l l y  of 
using step-by-step in tegra t ion  t o  f i n d  two l i n e a r l y  independent solut ions of t h e  
d i f f e r e n t i a l  equation that s a t i s f y  t h e  boundary conditions a t  t h e  wall. A su i t -  
ab le  l i n e a r  combination of t hese  so lu t ions  i s  then sought by a t r ia l -and-er ror  
method i n  order t o  match t h e  known free-stream so lu t ion  at t h e  edge of t h e  bound- 
a r y  layer .  In reference 5, t h e  method developed i n  reference 6 was  appl ied t o  
determine t h e  s t a b i l i t y  cha rac t e r i s t i c s  of a free-convection ve loc i ty  p r o f i l e  
without temperature f luc tua t ions .  A minimum c r i t i c a l  Reynolds number below t h e  
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Reynolds number at which f i n i t e  disturbances were observed experimentally w a s  
obtained i n  reference 5. However, none of t hese  methods made use of any of t h e  
ana ly t i c  propert ies  of t h e  Orr-Sommerfeld d i f f e r e n t i a l  equation i n  order t o  
s implify t h e  numerical calculat ions.  

In  t h e  present numerical method, use i s  made of t h e  property of t h e  dis-  
turbance d i f f e r e n t i a l  equations t h a t  so lu t ions  of t h e  d i f f e r e n t i a l  equations 
depend a n a l y t i c a l l y  on t h e  parameters appearing i n  t h e  equations. This method 
of solution, unl ike t h e  asymptotic methods, does not r e l y  on t h e  exis tence of a 
c r i t i c a l  layer .  

The bas ic  idea of t h e  present method i s  t o  in t eg ra t e  t h e  d i f f e r e n t i a l  equa- 
t i o n s  by a step-by-step method f o r  guessed values  of t h e  eigenvalues and start- 
ing values as i f  they  w e r e  nonlinear equations. The boundary-value problem i s  
t r e a t e d  as an i n i t i a l  value problem f o r  which not a l l  t h e  proper s t a r t i n g  values  
are known so  as t o  s a t i s f y  conditions at t h e  other  boundary. Equations involv- 
ing t h e  dependent va r i ab le s  a r e  formulated and evaluated a t  t h e  edge of boundary 
l aye r  so  tha t  t h e  zeros of t hese  equations ind ica te  t h a t  t h e  numerical so lu t ion  
matches t h e  known free-stream solut ion.  The Newton-Raphson second-order process 
i s  used t o  obtain correct ions t o  t h e  eigenvalues and t h e  s t a r t i n g  values i n  order 
t o  s a t i s f y  boundary conditions.  The i t e r a t i o n  process i s  continued u n t i l  t h e  
boundary conditions a r e  sat isf ied. .  

This general  method out l ined i s  described i n  reference 7. The purpose of 
t h i s  report  i s  t o  apply t h e  method t o  t h e  so lu t ion  of t h e  free-convection 
boundary-layer s t a b i l i t y  d i f f e r e n t i a l  equations and t o  show how t h e  ana ly t i c  
proper t ies  of t h e  d i f f e r e n t i a l  equations can be used t o  s implify t h e  appl ica t ion  
of t h e  general  method. 

DISTURBANCE EQUATIONS AND THEIR SOLUTIONS 

Disturbance Equations 

The disturbance equations f o r  a p a r a l l e l  f low as given i n  reference 1 a r e  
as follows: 

( 2 )  
2 s" - a s = iaRePr - c ) s  - (FH] 

(Symbols a re  defined i n  appendix A. ) 

Equations s i m i l a r  t o  t hese  were a l s o  derived i n  reference 2 by means of a 
d i f f e ren t  nondimensionalizing procedure. A b r i e f  der iva t ion  of equa.tions (1) 
and ( 2 )  i s  given i n  appendix B. The e f f ec t  of t h e  temperature f luc tua t ions  
appears i n  t h e  funct ion s, which couples equations (1) and ( 2 ) .  If s' i s  s e t  
equal t o  zero, equation (1) reduces t o  t h e  well-known Orr-Sommerfeld equation. 
The boundary conditions f o r  equations (1) and ( 2 ) ,  i n  t h e  case of an isothermal 
plate ,  are 
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The boundary condi t ion t h a t  t h e  temperature disturbance amplitude s van- 
i shes  at t h e  surface i s  a reasonable one f o r  me ta l l i c  p l a t e s  immersed i n  a f l u i d  
such as a i r  or mter, where t he  p l a t e  materials are highly conductive compared 
t o  t h e  f lu id .  

Replacement of Boundary Condit ions at I n f i n i t y  

The boundary conditions at i n f i n i t y  can be replaced by d i f f e ren t  conditions, 
which a r e  t o  be  s a t i s f i e d  a t  a f i n i t e  d i s tance  from t h e  plate .  The new condi- 
t i o n s  a r e  t o  be appl ied at t h e  edge of t h e  boundary l aye r  at 
values of F', F'", and H' a r e  near ly  a t  t h e i r  asymptotic values. For free- 
convection p r o f i l e s  F', F"', and HI approach zero at t h e  edge of t h e  boundary 
layer;  therefore ,  f o r  
t r e a t e d  as constants, and equations (1) and ( 2 )  reduce t o  

71 = ve, where t he  

7 2 rle t h e  coe f f i c i en t s  i n  equations (1) and ( 2 )  can be 

(5) 
2 4 2 cp"" - Z a ,  cp" + a, cp + s' = -iaRec(cp" - a c p )  

(6) 
2 

S" - a s = -iaRecPrs 

The general  so lu t ion  of t h e  system of equations (5)  and ( 6 )  is 

where el, c2, . . ., c6 a r e  a r b i t r a r y  constants and where P and y, respec- 
t i ve ly ,  a r e  t h e  roots  wi th  pos i t i ve  real  p a r t s  of 

2 = a' - iaRec 

The t a s k  remains of e l iminat ing t h e  a r b i t r a r y  constants i n  equations ( 7 )  
and (8)  i n  order t o  obtain a s e t  of l i n e a r  and homogeneous r e l a t ions  i n  t h e  de- 
pendent var iab les  and t h e i r  der ivat ives ,  which are t o  be s a t i s f i e d  at t h e  edge 
of t h e  boundary layer .  The elimination of t h e  a r b i t r a r y  constants i s  ca r r i ed  
out i n  appendix C, where it i s  shown t h a t  so lu t ions  of equations (1) and ( 2 ) ,  
which decay exponentially as t h e  d is tance  from t h e  p l a t e  increases indef in i te ly ,  
a r e  character ized by t h r e e  conditions t h a t  must be s a t i s f i e d  at t h e  edge of t h e  

4 

.... .. . . . . --I 



I 

boundary layer, 11 = qe. These conditions a r e  

s' + ys = 0 

2 2 Cp"' - a cp' + p(cp" - a c p )  + 2 y + p s = O  

2 s = o  cp"' + q" - p (cp' + up) + 

Solution of Eigenvalue Problem 

The approach t o  t h e  eigenvalue problem f o r  f ixed Pr  used herein i s  t o  f i x  
a and R e  and then t o  f i n d  values of c = cr + i c i  (eigenvalues) f o r  which 
equations (1) and ( 2 )  have solut ions (eigenfunctions) that s a t i s f y  t h e  boundary 
conditions (eqs. (3) and (11) t o  (13)). 

The eigenvalue c and t h e  corresponding eigenfunctions a r e  obtained by 
A t r i a l  t r e a t i n g  equations (1) and (2) as i f  they  were nonlinear equations. 

so lu t ion  i s  obtained by step-by-step numerical in tegra t ion  of t h e  d i f f e r e n t i a l  
equations s t a r t i n g  at 7 = 0 for assumed s t a r t fng  values and an assumed value 
of e.  Equations (11) t o  (13) a r e  evaluated at t h e  edge of t h e  boundary layer .  
If t h e  boundary conditions a r e  not s a t i s f i ed ,  t h e  s t a r t i n g  values and c are 
adjusted, and another t r i a l  i s  made. For t h e  assumed values of t h e  parameters, 
denote t h e  values taken on by t h e  expressions on the l e f t  s ide  of equations (11) 
t o  (13) by 

A = S '  + YS 1 

r s  2 2 % = c p " ' -  CL cp + p(cp" - a ) + - r + P  

It is desired t o  f i n d  t h e  eigenfunctions and t h e  values of t h e  parameters 
t h a t  w i l l  simultaneously cause Al, %, and t o  t a k e  on t h e  value zero. In  
order t o  ca lcu la te  A1, A2, and A3, s t a r t i n g  values cp(O),  c p ' ( O ) ,  cp"(O) ,  cpftf(0), 
s ( O ) ,  and s ' ( 0 )  have t o  be assigned as wel l  as a value f o r  e. The boundary 
conditions ak t h e  p l a t e  a r e  s a t i s f i e d  by tak ing  Since 
t h e  d i f f e r e n t i a l  equations (1) and ( 2 )  a r e  l i n e a r  and homogeneous and t h e  bound- 
a r y  conditions a r e  homogeneous, it i s  permissible t o  t ake  cp"(0) equal t o  some 
convenient f ixed  value. This value s e t s  t h e  magnitude of t h e  l i n e a r  o sc i l l a t ion .  
The remaining unknown s t a r t i n g  values, qff '  (0) and s '  (0), are denoted by a and 
b, respect ively.  

cp(0) = cp'(0) = s(0) = 0.  

Newton-Raphson method i s  used t o  obtain t h e  zeros of equations (14) t o  (16).  
If t h e  chosen values ay b, and c produce a solut ion cp('q;a,b,c) and 
s(q;a,b,c) t h a t  approximately s a t i s f i e s  equations (14) t o  (16), that is, ac tua l ly  
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leads t o  values of AI, %, and A3 c lose t o  zero, then  a b e t t e r  approximation 
i s  obtained by starting with a + A, b + Ab, and c + Ac instead of a, b, 
and e, where La, Ab, and Ac a r e  obtained as so lu t ions  of 

Ac (17) z- Ab + ZT aAl A + aa 0 = A1(a,b,c) + 

ac  F aA2 Ab + aa. ab 0 = A2(a,b,c) + 

aA3 ac aA3 Ab + &- ab 0 = A (a,b,c) + 
3 

The quan t i t i e s  A1, %, and A3 and the p a r t i a l  der iva t ives  evaluated at 
7 = ve can be determined by in tegra t ing  t h e  d i f f e r e n t i a l  equations (1) and ( 2 )  
by a step-by-step method. 
be given e i t h e r  by a f i n i t e  difference approximation or from equations obtained 
by p a r t i a l  d i f f e ren t i a t ion  of equations (1) and ( 2 )  with respect t o  a, b, 
and e. (The coe f f i c i en t s  of eqs. (1) and ( 2 )  a r e  ana ly t i c  functions of 7 and 
depend ana ly t i ca l ly  on t h e  parameters a, Re, and c. Therefore, t h e  solut ions 
of eqs. (1) and ( 2 )  have t h e  same ana ly t i ca l  p roper t ies  and have t h e  required 
p a r t i a l  der ivat ives .  ) I n  t h e  former method four in tegra t ions  of equations (1) 
and ( 2 )  a r e  car r ied  out, one with a basic  s e t  a, b, and c, and th ree  more, 
each with appropriate s m a l l  increments on a, by and e. P a r t i a l  d i f f e ren t i a -  
t i o n  gives t h e  same information with one integrat ion.  However, i n  t h i s  second 
method, t h ree  extra s e t s  of d i f f e r e n t i a l  equations have t o  be integrated.  

The p a r t i a l  der iva t ives  i n  equations (17 )  t o  (19)  may 

The equations f o r  t h e  der iva t ives  with respect t o  a a r e  as follows: 

(21 )  
2 

S" - a s a = iaRePr IF' - c ) sa  - 'paH'] a 

with t h e  i n i t i a l  condit ions 

The equations f o r  t h e  der iva t ives  with respect t o  b a r e  a s  follows: 

(23) 
- 2a 2 q); + a 4 'pb + s '  = iaRe IF' - c ) ( ' p i  - a, 2 'pb) - F1"p] 

T' I b 

(24) 
2 s" b - a sb = iaRePr [F' - c ) s b  - ' p b H j  

with t h e  i n i t i a l  conditions 
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and the equations f o r  t h e  der iva t ives  with respect t o  c a r e  as follows: 

with t h e  i n i t i a l  conditions 

In these  equations the subscr ipts  a, b, and c denote p a r t i a l  d i f f e ren t i a -  
with respect t o  a 3 cpl" (0), b = 8 ' ( 0 ) ,  and c, respectively.  For example, 
(a/aa)(P(q;a,b,c) gives t h e  r a t e  of change of cp with respect t o  a with 
and -q held constant as a function of q.  The p a r t i a l  der iva t ives  of t h e  

At  s . appearing i n  equations ( 1 7 )  t o  (19) can now be evaluated. 
boundary conditions (eqs. (14) t o  (16 ) )  involve c, t h e  eigenvalue, through t h e  
intermediate var iab les  /3 and y defined by equations ( 9 )  and (10). Ut i l iz ing  
equations (14) t o  (16) r e s u l t s  i n  

Note that t h e  

s '  4- ysa aa= a 

iaRePr 1 - s  
2 r  8' + yg - ac= c 
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aA, 2 r + aq$ - p (% + arpb) + - 'b r + a  ab = 

For a given point (a,Re) i n  t h e  a,Re-plane, t h e  procedure out l ined should 
verge t o  an eigenvalue e. 

Cr i te r ion  f o r  Convergence t o  an Eigenvalue 

The procedure out l ined previously f o r  f inding t h e  eigenvalue f o r  a given 

The numerical integrat ion 
point i n  t h e  a,Re-plane was programed f o r  solut ion by using complex ar i thmetic  
on t h e  IBM 7090 located at  t h e  Lewis Research Center. 
was done with t h e  Runge-Kutta method, which gives fourth-order accuracy. Con- 
vergence t o  an eigenvalue was  es tabl ished by requir ing that 
I All + 1 A21 + 1 A31 < 5x10-6 or requir ing that \AI, 1Ab1, and 1 Acl a l l  be 
l e s s  than or equal t o  5X10-6. 

2 

The s t e p  s i z e  was externa l ly  control led and s e t  such t h a t  t h e r e  was no s ig-  
n i f i can t  change i n  t h e  eigenvalue when t h e  example was rerun with a s t ep  s i z e  
equal t o  one-half of t h e  o r ig ina l  value. 

In order t o  fix t h e  s i z e  of t h e  solution, t h e  eigenfunctions were normalized 
a f t e r  each in tegra t ion  so t h a t  cp was s e t  equal t o  u n i t y  at t h e  edge of t h e  
boundary layer.  

The e f f ec t  on t h e  r e s u l t s  of t h e  choice of t h e  value of 7 for t h e  end of 
For a i r  qe was taken t o  be 6, and for t h e  range of in tegra t ion  was  examined. 

water qe  was taken t o  be 5. Variations of ve from these  values f o r  both 
cases produced l i t t l e  or no changes i n  t h e  values o f t h e  eigenvalues. A s  a 
matter of  fac t ,  qe 
approximat ions t o  t h e  eigenvalues. 

was taken t o  be 3 f o r  exploratory runs that resu l ted  i n  good 

Determination of Neutral Curve 

The r e s u l t s  of t h e  s t a b i l i t y  analysis  a r e  usua l ly  displayed i n  an a,Re- 
diagram on which t h e  curve c i  = 0 is  drawn. On t h i s  curve Re can be consid- 
ered a funct ion of a. The minimum value of Re for poin ts  on t h i s  curve i s  
ca l led  t h e  minimum c r i t i c a l  Reynolds number. The disturbances corresponding t o  
points  i n  t h e  
damped. 

u,Re-plane with Reynolds numbers below t h e  c r i t i c a l  value w i l l  be 
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The procedure used herein t o  f i n d  t h e  c r i t i c a l  Reynolds number consisted i n  
holding Re constant and p lo t t i ng  t h e  imaginary par t  c i  of t h e  establ ished 
eigenvalues against  a. The values of a f o r  which c i  = 0 could be read from 
such a graph establ ishing poin ts  on t h e  neu t r a l  curve. For those values of R e  
below the c r i t i c a l  Reynolds number, t h e  p lo t  of ci against  a would not give 
any c i  = 0. However, after t h e  c r i t i c a l  Reynolds number had been bracketed, a 
was held constant, and successive l i nea r  in te rpola t ions  l ed  t o  t h e  c r i t i c a l  
Reynolds number. Other po in ts  on t h e  neut ra l  curve were obtained by p lo t t i ng  
c i  against  e i t h e r  a or R e  and holding t h e  other constant, depending on 
which choice proved t o  be more convenient. Although th i s  procedure is s t r a i g h t -  
forward and easy t o  apply, it i s  an ind i rec t  way t o  e s t ab l i sh  points  on t h e  
neu t r a l  curve. This disadvantage can be a t t r i b u t e d  t o  t h e  choice of t h e  complex 
number c as an eigenvalue. The advantage of using c as an  eigenvalue W i l l  
become apparent after examining the d i f f e r e n t i a l  equations t o  be integrated.  

Fixing a and R e  and determining t h e  r e l a t i o n  between t h e  four  param- 
e t e r s  
t o  (13)) correspond t o  t h e  choice of (cr, c i )  as t h e  unknown eigenvalue p a i r  and 
lead  t o  a system of 24 f i r s t - o r d e r  complex d i f f e r e n t i a l  equations t o  be in te -  
grated.  Since points  on t h e  neut ra l  curve ( c i  = 0)  are of primary in t e re s t ,  
another choice i s  t o  s e t  
among t h e  parameters a, Re, and C y  by solving equations (17 )  t o  (19)  with 
c i  = 0 and Aci = 0. Se t t ing  c i  = 0 leads t o  t h e  so lu t ion  of six real equa- 
t i o n s  i n  f i v e  real unknowns. In  general, th is  set of equations w i l l  not be con- 
s i s t e n t  unless t h e  parameters a, Re, and C y  are chosen properly. However, 
t h e  proper value of t hese  parameters is t h e  information being sought. Since t h e  
value of c i  has been specified,  it is no longer permissible t o  f i x  both 
a 
i n  order t o  provide a consistent set of six real  equations i n  six real unknowns. 
However, t h e  introduction of t h i s  addi t iona l  unknown requires  t h e  in tegra t ion  
of an addi t iona l  set of six f i r s t - o r d e r  complex d i f f e r e n t i a l  equations. 

a, Re, and (cr,ci) by sa t i s fy ing  t h e  boundary conditions (eqs. (11) 

c i  = 0 and then attempt t o  f i n d  t h e  proper r e h t i o n  

and Re, and t h e  va r i a t ion  of one of these  parameters has t o  be allowed f o r  

Hence, t h e  choice of (cr,c1) as t h e  unknown eigenvalue pa i r  among t h e  pa- 
rameters 
t i o n s  t o  be integrated.  This ce r t a in ly  j u s t i f i e s  t h e  choice of c as an eigen- 
value for t h e  case when t h e  d i f f e r e n t i a l  equations are solved using complex 
arithmetic.  If t h e  system of d i f f e r e n t i a l  equations is  wr i t ten  i n  real form, 
t h e  number of equations t o  b e  integrated adds up t o  84. However, 72 of t hese  
equations involved p a r t i a l  der ivat ives  with respect  t o  t h e  s t a r t i n g  values and 
t h e  eigenvalue c. The number of equations t o  be in tegra ted  can be reduced i f  
use is made of t h e  property t h a t  t h e  solut ions of equations (1) and ( 2 )  are 
ana ly t ic  functions of 7 and depend ana ly t i ca l ly  on t h e  parameters a, Re, 
and c. This means t h a t  the information provided by t h e  in tegra t ion  of t h e  72 
real equations given by equations (20) to (28) can be  obtained by the integra-  
t i o n  of only 36 real equations and t h e  use of t h e  Cauchy-Riemann re la t ions ,  t hus  
giving a t o t a l  of 48 real equations t o  be integrated.  
change of cp with respect  t o  ci i s  given i n  terms of der iva t ives  with respect 
t o  cr by r e l a t ions  of t h e  form: = aqr.cr and a c p r . c i  = -acpi/acr. 
In s i s t i ng  that would amount t o  r e j ec t ing  t h e  information furnished by 
t h e  Cauchy-Riemann re la t ions .  

a, Re, and (c r ,c i )  leads t o  t h e  fewest number of d i f f e r e n t i a l  equa- 

For example, t h e  rate of 

Act = 0 
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Another j u s t i f i c a t i o n  f o r  the choice of ( C j c i )  88 t h e  unknown eigenvalue 
pair ,  thereby allowing c i  t o  t ake  on nonzero values, is that this choice may 
lead t o  a so lu t ion  of the eigenvalue problem, whereas s e t t i n g  ci = 0 at  t h e  
outset  may eliminate any solutions.  
case of plane Couette flow has no so lu t ion  f o r  

For example, t h e  eigenvalue problem i n  t h e  
c i  = 0. 

ENERGY BALANCE O F  DISTURBANCE MOTION 

After t h e  eigenvalue problem has been solved and t h e  eigenfunctions have 
been determined, t h e  energy balance of t h e  disturbance motion can be computed. 

The time rate of increase of t h e  disturbance k i n e t i c  energy per un i t  of 
volume of a f l u i d  p a r t i c l e  that moves with t h e  bas ic  flow i s  

An equation governing t h e  t ime rate of increase of t h e  k ine t i c  energy can 
be obtained by t h e  same technique as used i n  reference 8 f o r  ordinary boundary 
layers,  that is, by multiplying equation (B6) by 5 and equation (B7) by ?, 
adding these  equations, and using equation (B5) t o  simplify. T h i s  procedure 
y ie lds  

N 

where = @;/ax) - (a';/ay). 

O f  course, a l l  disturbance quan t i t i e s  a r e  taken t o  be r e a l  i n  t h e  energy 
balance equation (39).  
- respect t o  y from y = 0 t o  y = m and with respect t o  x over a wavelength 
A of t h e  disturbance i n  order t o  obtain t h e  growth of k ine t ic  energy per u n i t  
of time depth and area.  After in tegra t ion  t h e  second and last  terms on t h e  r igh t  
s ide  of equation (39) vanish s ince u and ? vanish f o r  y = 0 and y = m 

and have t h e  period A with respect t o  x. The equation governing t h e  time r a t e  
of increase of k i n e t i c  energy of t h e  disturbance motion i s  

The terms i n  t h i s  equation a r e  t o  be integrated with 

r u  

- 
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The first term i n  t h e  integrand of t h e  r igh t  s ide  of equation (40) gives t h e  ' 

r a t e  at which t h e  basic  flow, i n  v i r t u e  of i t s  shearing motion, i s  working 
against  t h e  Reynolds s t r e s s e s  a r i s ing  frm t h e  disturbance, t h e  last term repre- 
sen ts  t h e  d iss ipa t ion  of t h e  disturbance motion, and t h e  second term represents 
t h e  work done by t h e  buoyancy force.  

The reference quan t i t i e s  introduced i n  appendix B a r e  used t o  transform 
equation (40)  t o  t h e  following dimensionless form: 

where 

The disturbance quan t i t i e s  i n  t h e  integrand on t h e  r igh t  s ide  of equa- 
t i o n  (41) a r e  given by t h e  following re la t ions :  

* 

N 

AT t = a(s(q) exp b u ( ~  - (45) 

where R e  denotes t h e  r e a l  par t  of t h e  complex quantity.  

The in tegra ls  appearing i n  equation (41) a r e  evaluated through subs t i tu t ion  
of equations (43) t o  (45) followed by in tegra t ion  with respect t o  5 .  It is 
found tha t ,  f o r  neu t r a l  disturbances, 

The following designations are used t o  i den t i fy  t h e  integrands i n  equation (46) :  



, , . ... .. .. . , 

e Re = -(cp;cp, - 

For neu t ra l  disturbances t h e  energy balance gives  

The s a t i s f a c t i o n  of equation (50) provides a check on t h e  so lu t ion  of t h e  eigen- 
value problem. 

BASIC VEmCITY AND TEMPERATLTRE PROFILES FOR WATER 

The P r  = 0.733 ve loc i ty  and temperature p r o f i l e s  a r e  tabula ted  i n  r e fe r -  
ence 9. However, f o r  t h e  case Pr = 6.7 r e s u l t s  were not ava i lab le .  In order 
t o  obtain t h e  Pr = 6.7 ve loc i ty  and temperature prof i les ,  t h e  free-convection 
boundary value problem was solved by t r e a t i n g  it as an i n i t i a l  value problem as 
described i n  t h e  INTRODUCTION. However, i n  this case t h e r e  i s  no eigenvalue i n  
t h e  equations, r a t h e r  t h e  proper s t a r t i n g  values have t o  be determined i n  order 
t o  s a t i s f y  conditions at i n f i n i t y .  The boundary value problem as given i n  r e f e r -  
ence 9 cons i s t s  of solving 

(51) 
2 F"' + 3FF" - 2 ( F ' )  + H = 0 

H" -k 3PrFH' = 0 (52) 

subject t o  t h e  boundary conditions 

F(0)  = F ' ( 0 )  = 0 H(0) = 1 (53) 

F ' ( m )  = H ( m )  = 0 (54) 

The tabula t ion  of t h e  Pr = 6 . 7  v e l o c i t y  p r o f i l e  i s  given i n  t a b l e  I and i s  
shown i n  f igu re  1 along with t h e  Pr  = 0.733 p ro f i l e .  

With t h e  ve loc i ty  and temperature p r o f i l e s  f o r  both a i r  and water avai lable ,  
t h e  s t a b i l i t y  of t hese  two free-convection boundary-layer flows can be inves t i -  
gated. 

RESULTS AND DISCUSSION 

S t a b i l i t y  ca lcu la t ions  were ca r r i ed  out f o r  t h e  f r e e  convection of a i r  
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(Pr = 0.733) and water (Pr = 6.7)  with and without temperature f luc tua t ions .  

S t a b i l i t y  Results f o r  Air Without Temperature Fluctuations 

Neglecting temperature f luc tua t ions  amounts t o  solving t h e  ordinary 
boundary-layer s t a b i l i t y  problem with t h e  prescribed free-convection ve loc i ty  
p r o f i l e  inser ted  i n  the Orr-Sommerfeld equation, which is equation (1) with 
set  equal t o  zero. 

s f  

The r e s u l t s  of t h e  present method can be compared with t h e  calculated re- 
su l t s  of reference 5 f o r  t h e  Pr = 0.733 ve loc i ty  p ro f i l e .  Figure 2 shows t h e  
neutral curve drawn i n  t h e  a,Re-plane calculated by the present method and a l s o  
shows some of t h e  neu t r a l  points  calculated In  reference 5. D o  shown i n  t h i s  
f i gu re  i s  t h e  point at which a f i n i t e  disturbance was observed at Re = 400 and 
a = 0.367 (ref. 10). The present method gives a minimum c r i t i c a l  Reynolds num- 
b e r  of 105 at a = 0.4. T h i s  value compares w e l l  with t h e  value of 103 calcu- 
l a t e d  i n  reference 5. The lowest value of Re calculated i n  reference 2 f o r  
this case was Re = 478 at a = 2.54. The values obtained from references 5, 
10, and 2, respectively,  were a l l  converted t o  t h e  values quoted, which corre- 
spond t o  t h e  choice of reference quan t i t i e s  used herein.  

In f igu re  3(a) t h e  eigenfunctions (pry (pi, (p;, and 'pi a r e  shown f o r  t h e  
minhum c r i t i c a l  Reynolds number of 105 at a = 0.4 with cr = 0.1513. Also 
shown i n  t h i s  f i gu re  a r e  t h e  locat ions of t h e  c r i t i c a l  layers .  The q u a l i t a t i v e  
agreement between these  curves and t h e  curves given i n  reference 5 f o r  t h i s  case 
i s  good. 

The d i s t r ibu t ion  of t h e  energy t r a n s f e r  functions throughout t h e  boundary 
layer  is  a l so  presented i n  f igu re  3(b) ,  where t h e  loca t ion  of the c r i t i c a l  
l ayers  i s  a l s o  shown. As i s  t h e  case f o r  ordinary boundary layers,  most of t h e  
energy t r a n s f e r  from t h e  bas ic  flow by t h e  Reynolds stress takes  place at  a 
c r i t i c a l  layer.  Of course, f o r  ordinary boundary-layer ve loc i ty  p r o f i l e s  t h e r e  
i s  only one c r i t i c a l  layer .  For t h e  free-convection ve loc i ty  prof i le ,  t h e  outer  
c r i t i c a l  l ayer  appears t o  be more s ign i f i can t  than t h e  inner c r l t i c a l  layer. As 
can be seen f rom f igu re  3(b),  t h e  dfssfpat ion i s  g rea t e s t  near t h e  p la te .  
course, f o r  neu t r a l  o sc i l l a t ions  t h e  net a r ea  under t h e  two c m e s  should add up 
t o  zero. Integrat ion by Simpson's rule v e r i f i e d  this f o r  t h i s  case and f o r  a l l  
cases t o  be discussed subsequently. 

O f  

S t a b i l i t y  Results f o r  Water Without Temperature Fluctuations 

The r e s u l t s  f o r  this case are q u a l i t a t i v e l y  t h e  same as f o r  t h e  previous 
case. a,.Re-plane calculated by 
t h e  present method and a l s o  shows t h e  points  at which f in i te  disturbances w e r e  
observed i n  reference 1. 
of reference 1. As can be seen from f igu re  4, a l l  t h e  experimental po in ts  l i e  
within t h e  region of amplif icat ion as obtained by t h e  present method. The ex- 
perimental points  represent na tu ra l  f i n i t e  disturbances, which were observed 
without t h e  Use of some device t o  introduce control led disturbances i n  order t o  

Figure 4 shows t h e  neu t r a l  curve drawn i n  t h e  

These experimental po in ts  w e r e  obtained from f i g u r e  8 
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provoke t h e  onset of turbulence. The lowest value of R e  calculated i n  refer- 
ence 1 f o r  t h i s  case was R e  = 5040 at a = 1.5. 

In f igure  5(a) t h e  eigenfunctions rp,, Vi, cp;, and cpl are shown f o r  t h e  
minimum c r i t i c a l  Reynolds nmber  of 385 at a = 0.4125 with C y  = 0.0800, and 
the d i s t r ibu t ion  of energy t r a n s f e r  throughout t h e  boundary layer  i s  shown i n  
f igu re  5(b) .  For t h e  case of no temperature f luctuat ions,  t h e  p l o t s  of t h e  
eigenfunctions and t h e  d i s t r i b u t i o n  of energy are q u i t e  s imi la r  f o r  air and 
w a t  er . 

S t a b i l i t y  Results f o r  Air With Temperature Fluctuations 

In reference 1, it i s  indicated that f o r  l a rge  values of &e the tempera- 
t u r e  f luc tua t ions  can be neglected f o r  t h e  purpose of solving t h e  eigenvalue 
problem. O f  course, "large" i s  a r e l a t i v e  term. For computational purposes, a 
l a rge  Reynolds number means that  t h e  asymptotic method may be applicable.  
another sense, t h e  statement that t h e  Reynolds number i s  not t o o  l a rge  can mean 
that t h e  d i r e c t  numerical method i s  applicable.  Of course, t h e  regions of appl i -  
c a b i l i t y  of these  two methods could overlap. 
w e r e  being encountered i n  t h e  s t a b i l i t y  ca lcu la t ions  with no temperature f luc tu-  
ations,  it was decided that t h e  Reynolds number was not t oo  large.  However, t h e  
t a s k  remained of determining whether o r  not t h e  Reynolds number was la rge  enough 
t o  neglect temperature f luc tua t ions .  For t h i s  reason, it w a s  decided t o  examine 
t h e  e f f ec t s  of temperature f luctuat ions.  

In 

Since no numerical d i f f i c u l t i e s  

Figure 6 shows the neu t r a l  curve drawn i n  t h e  a,Re-plane f o r  t h i s  case. 
It i s  seen t h a t  t h e  neu t r a l  curve develops a hump f o r  s m a l l  values o f  a and R e  
and t h e  minhum c r i t i c a l  Reynolds number i s  lowered. 
c loses t  t o  t h e  minimum c r i t i c a l  point i s  at R e  = 64, a = 0.15 with 
cr = 0.2692. 
f luctuat ions.  
f luc tua t ions  is  followed, proceeding t o  lower values of a. below 0.15, it i s  
seen that cr increases cont inual ly  un t i l ,  at Re equal t o  about 70, t h e  phase 
ve loc i ty  of t h e  disturbance wave is grea te r  t han  the m a x i "  ve loc i ty  of t h e  
basic  flow (see  f i g .  1). 
of a less than about 0.13. This r e s u l t  i s  impossible f o r  ordinary boundary- 
l aye r  flows f o r  which t h e  Orr-Somerf'eld equation is  appl icable  ( see  ref. 11). 

The calculated point 

Also shown i n  this f igure  i s  t h e  n e u t r a l  curve f o r  no temperature 
If a pa th  along t h e  neu t r a l  curve f o r  t h e  case with temperature 

Consequently, t h e r e  a r e  no c r i t i c a l  layers  f o r  values 

It is  of i n t e r e s t  t o  examine t h e  eigenfunctions and energy d is t r ibu t ion ,  
while proceeding along t h e  neu t r a l  curve t o  lower values of a with cr in-  
creasing. Figures 7 ( a ) ,  8(a), and 9 ( a )  show t h e  eigenfunctions, and f i g -  
ures 7(b),  8 (b) ,  and 9 (b )  show t h e  energy d i s t r ibu t ions  f o r  a = 0.45, 0.15, 
and 0.04, respectively.  

Examination of f igu re  7(a) shows tha t  the p l o t s  of t h e  ve loc i ty  eigen- 
f'unctions with temperature f luc tua t ions  resemble t h e  p l o t s  of t h e  ve loc i ty  eigen- 
functions f o r  no temperature f luc tua t ions  ( f ig .  3 (a ) ) .  Also shown i n  f igu re  7 ( a )  
a r e  t h e  temperature eigenfunctions. A s  t h e  values of a become smaller, t h e  
p l o t s  of t h e  ve loc i ty  eigenfunctions change t h e i r  shape, and t h e  curves tend t o  
o s c i l l a t e  l e s s  than  at higher values of a (see f i g s .  7 (a ) ,  8(a), and 9 ( a ) ) .  
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Ekamination of t h e  energy d i s t r ibu t ions  f o r  a = 0.45 ( f ig .  7 ( b ) )  shows 
that the outer  c r i t i c a l  l ayer  i s  s igni f icant  i n  that t h e  peak of t h e  Reynolds 
stress-term curve i s  located near it, as is  t h e  case without temperature f luc tu-  
a t ions.  It can be seen that t h e  energy d i s t r ibu t ion  i s  qua l i t a t ive ly  the same 
as fo r  no temperature f luctuat ions,  except that t h e  temperature f luc tua t ion  term 
i s  reinforcing t h e  Reynolds stress term. 

When t h e  two c r i t i c a l  l ayers  are almost coincident at u = 0.15, it i s  seen 
i n  f i g u r e  8(b)  t h a t  the c r i t i c a l  l ayers  have no cor re la t ion  with the energy peak 
but t h e  buoyancy term i s  giving a pos i t i ve  contribution as i n  t h e  previous case. 
Nott that i n  t h i s  case t h e  Reynolds s t r e s s  term is  not adding energy t o  t h e  d i s -  
turbance flow, but is a c t u a l l y  subtract ing energy from it. When t h e  c r i t i c a l  
l ayer  has completely disappeared as i n  f igu re  9(b),  it is seen that the buoyancy 
term i s  s t i l l  adding energy t o  t h e  disturbance flow, and again t h e  Reynolds 
stress term i s  subtracting. 

From t h e  previous results it appears that the neglect of temperature f luc tu-  
a t ions  f o r  t h e  purpose of solving t h e  eigenvalue problem can be j u s t i f i e d  i n  t h e  
v i c i n i t y  of a = 0.35 t o  0.55, where t h e  eigenvalues f o r  t h e  case without tem- 
perature  f luc tua t ions  a r e  c lose  t o  t h e  eigenvalues f o r  t h i s  case. However, as 
can be seen from f igu re  7 (a ) ,  t h e  temperature f luc tua t ions  are not negl ig ib le  
even i n  t h i s  range of a. 

For values of a smaller than a = 0.35, t h e  buoyancy term i n  t h e  energy 
balance is s igni f icant  i n  that it is t h e  only term t h a t  i s  giving a pos i t ive  
contr ibut ion t o  t h e  energy of t h e  disturbance motion, For a = 0.15 and 0.04 
it can be seen that t h e  Reynolds s t r e s s  term i s  ac tua l ly  extract ing energy. It 
appears t h a t  t h e  introduct ion of temperature f luc tua t ions  introduces a new mode 
of i n s t a b l l i t y .  This new mode i s  characterized by t h e  buoyancy force  term i n  
t h e  energy balance assuming a dominant role .  The buoyancy folrce term is inde- 
pendent of any property of t h e  bas ic  flow ve loc i ty  p r o f i l e  and i s  proportional 
t o  t h e  g rav i t a t iona l  accelerat ion.  

The presence of buoyancy e f f e c t s  allows the  phase ve loc i ty  of t h e  dis turb-  
ance wave t o  be grea te r  than t h e  maximum ve loc i ty  of t h e  bas ic  f l o w .  
problems of hydrodynamic s t a b i l i t y  where t h e  energy supply t o  t h e  disturbance i s  
proport ional  t o  t h e  g rav i t a t iona l  force, t h e  phase ve loc i ty  is grea te r  than t h e  
maximum ve loc i ty  of t h e  bas ic  flow. In  fac t ,  i n  reference 1 2  it i s  shown, f o r  
s m a l l  wave numbers, that t h e  phase ve loc i ty  i s  equal t o  twice t h e  maximum veloc- 
i t y  f o r  h i n a r  flow down an incl ined plane. 

In other 

S t a b i l i t y  Results f o r  Water WTth Temperature Fluctuations 

The amount of information obtained f o r  t h i s  case is  s ign i f i can t ly  less than 
f o r  t h e  previous case of air with temperature f luctuat ions,  because numerical 
d i f f i c u l t i e s  w e r e  encountered for l a rge  values of a and Re. Figure 10 shows 
the neu t r a l  curve drawn i n  t h e  u,Re-plane. A l l  t h e  points  on this curve repre- 
sent eigenvalues which have the property t h a t  the phase ve loc i ty  of t h e  dis turb-  
ance wave i s  grea te r  than t h e  m a x i ”  ve loc i ty  of t h e  bas i c  flow. 
( f ig .  6 )  this property was obtained only for Also shown i n  f igu re  10 

For a i r  
cc < 0.13. 
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i s  t h e  neu t r a l  curve f o r  water without temperature f luc tua t ions .  
c u l t  t o  t r a c e  t h e  curve with temperature f luc tua t ions  f o r  higher values of a 
than shown, because t h e  values of t h e  eigenfunctions at  t h e  edge of t h e  boundary 
l aye r  changed markedly with each run even though t h e  eigenvalues and s t a r t i n g  
values were only changing i n  t h e  eighth decimal place. However, even though t h e  
numerical method cannot produce t h e  eigenfunctions, the eigenvalues s o  obtained 
can be accepted as being r e l i a b l e  (see ref. 7) .  The point at a. = 0.75 and 
Re = 385 i n  f igu re  10 is  one where eigenvalues, but not t h e  eigenfunctions, can 
be obtained. This point is on a neu t r a l  curve with phase ve loc i ty  = 0.1241, 
which i s  l e s s  than  the maximum ve loc i ty  i n  t h e  bas ic  flow (see f i g .  :y. 

It was d i f f i -  

The eigenfunctions f o r  R e  = 34 at a = 0.45 with cr = 0.1556 a r e  shown 
i n  figure l l (a ) ,  and t h e  energy d i s t r ibu t ion  f o r  t h i s  case is shown i n  f i g -  
ure  l l ( b ) .  It can be seen that t h e  two cases, air  and water, with temperature 
f luc tua t ions  a r e  q u a l i t a t i v e l y  t h e  same i n  that t h e  buoyancy term i s  providing 
most of t h e  energy input i n t o  t h e  disturbance motion when the phase ve loc i ty  i s  
g rea t e r  than t h e  m a x i m u m  ve loc i ty  i n  t h e  boundary layer.  

CONCLUDING REMARKS 

The d i r e c t  numerical method gives a minimum c r i t i c a l  Reynolds number lower 
than t h e  Reynolds number at which f i n i t e  disturbances were observed experimen- 
t a l l y ,  whereas calculat ions based on asymptotic techniques y ie ld  a minimum 
c r i t i c a l  Reynolds number higher than t h e  Reynolds number at which f i n i t e  dis- 
turbances were observed. However, t h e  d i r ec t  method is  not un iversa l ly  appl i -  
cable t o  a l l  problems for a l l  ranges of t h e  parameters, espec ia l ly  when t h e  
Reynolds number i s  large.  Generally, the  method should give r e s u l t s  i n  t h e  
lower l e f t  corner of the  
i s  usua l ly  found. 

a,Re-plane where t h e  minimum c r i t i c a l  Reynolds number 

By re fer r ing  t o  t h e  r e s u l t s  of experiments w i t h  na tu ra l  disturbances, t h a t  
is, experiments conducted without t h e  use of control led disturbances t o  provoke 
t h e  onset of turbulence, it can be concluded that t h e  minimum c r i t i c a l  Reynolds 
number calculated herein f o r  t h e  two cases without temperature f luc tua t ions  pro- 
vides  a lower bound t o  t h e  Reynolds number at which f i n i t e  disturbances were ob- 
served. However, inclusion of temperature f luc tua t ions  indicated t h a t  t h i s  mini- 
mum c r i t i c a l  Reynolds number is not the least lower bound. Rather, t h e r e  i s  a 
lower m'lnimum c r i t i c a l  Reynolds number at s m a l l  values of Wave number a. This 
in s t ab i l i t y ,  f o r  which t h e  phase ve loc i ty  of t h e  disturbance wave i s  g rea t e r  than 
t h e  maximum ve loc i ty  of the bas ic  flow i n  t h e  boundary layer,  has not been re- 
ported i n  t h e  accounts of na tura l  t r a n s i t i o n  experiments. 

The existence of temperature f luc tua t ions  provides a new mechanism of 
energy t r a n s f e r  t o  t h e  k ine t i c  energy of t h e  disturbance motion. This amount of 
energy is a s ign i f i can t  contribution t o  t h e  energy balance i n  that, for a l l  
cases calculated, it w a s  always posi t ive,  t h a t  is, des tab i l iz ing .  

Lewis Research Center 
National Aeronautics and Space Administrat ion 

Cleveland, Ohio, September 19, 1963 



I 

a 

b 

C 

C 
P 

eB 

eD 

eRe 

F 

Fr 

G r  

l3 

H 

i 

m 

k 

P 

Pr 

P 

Re 

6?e 

X 

S 

T 

m 

s p e c i f i c  heat at constant pressure 

buoyancy 

d i s s ipa t ion  

Reynolds stress 

stream function, dimensionless 

Froude number 

Grashof number based on 

g rav i t a t iona l  acce lera t ion  

x, gp* ECx 3 2  /v, 

temperature dimensionless 

imaginary uni t  

defined i n  eq. (42)  

coef f ic ien t  of heat conductivity 

pressure of bas ic  flow 

Prandt 1 number 

pressure 

Reynolds number 

r e a l  pa r t  

temperature amplitude f'unct ion, dimensionless 

temperature, bas ic  flow 

Tw - Tco 
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wall temperature 

ambient t emp erat ure  

t emp eratur e 

v e l o c i t y  p a r a l l e l  t o  plate ,  bas ic  flow 

reference ve loc i ty  p a r a l l e l  to p l a t e  

ve loc i ty  p a r a l l e l  to p l a t e  

v e l o c i t y  normal to plate,  bas ic  flow 

ve loc i ty  normal to p l a t e  

d is tance  from leading edge of p l a t e  

normal d is tance  from p l a t e  

wave number 

coef f ic ien t  of volumetric expansion 

reference length, -@x/ ( G r x  ) 1/4 

normal d is tance  from plate ,  dimensionless 

edge of boundary layer  

wavelength, Zx/a, dimensionless 

coef f ic ien t  of v i scos i ty  

kinematic v i s c o s i t y  

dis tance from leading edge of plate ,  dimensionless 

dens i ty  

time, dimensionless 

stream funct ion amplitude, dimensionless 

stream function, dimensionless 

Subscript s : 

a, b, c 

i r e f e r s  to imaginary pak-t 

denotes d i f f e r e n t i a t i o n  with respect to quant i ty  
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m a x  m a x i "  

r r e fe r s  t o  r e a l  par t  

Superscripts: 

N disturbance quant i ty  

- dimensional quant i ty  

I d i f f e ren t i a t ion  with respect t o  7 
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DERIVATION OF STABILITY EQUATIONS 

The governing equations f o r  a p a r a l l e l  bas i c  f low plus  a disturbance as 
given i n  reference 1 a r e  as follows: 

au + av = 
G a y  

where 

+=a+- a 2  
ax2 ay2 

The bas ic  s teady-s ta te  flow i s  t h e  free-convection flow about a v e r t i c a l  heated 
p la te .  
has been neglected except i n  t h e  g rav i ty  term where t h e  dens i ty  was taken t o  de- 
pend l i n e a r l y  on t h e  temperature. I n  equations (B1) t o  (B4) t h e  density, where 
it appears, i s  taken t o  be  a constant. I n  accordance with t h e  paral le l - f low 
assumption, t h e  bas ic  flow can be described by 
T = T(y) .  Superimposed upon t h e  basic  flow i s  a two-dimensional disturbance. 
The disturbance equations a r e  obtained by subs t i t u t ing  
p = P + G, and t = T + 
flow, and neglecting products of disturbance quan t i t i e s  and t h e i r  der ivat ives .  
The disturbance equations a r e  

In  t h e  der iva t ion  of t h e  governing equations t h e  va r i a t ion  of t h e  dens i ty  

U = U(y), V = 0, P = P(y), and 

u = U + u, v = ?, N 

i n  t h e  previous equations, subtract ing out t h e  bas ic  

-. . . - -- . . . . . . . 
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The disturbance v e l o c i t i e s  can be obtained from a stream funct ion 

from which 

As can be seen from equation (B9), t h e  disturbance i s  taken t o  be per iodic  
i n  t h e  d is tance  x along t h e  p la te .  The pos i t i ve  quant i ty  E i s  t h e  wave num- 
ber  of a disturbance wave, and Fr, t h e  real  par t  of F, is  t h e  ve loc i ty  of 
propagation of t h e  wave. The imaginary pa r t  of S w i l l  determine whether t h e  
disturbance w i l l  grow (Ci > 0)  o r  decay (Fi < 0)  i n  time. 
turbance i s  a l s o  per iodic  i n  t h e  dis tance x along t h e  p l a t e  and may be ex- 
pressed as 

The temperature dis- 

It is convenient t o  represent t h e  disturbance quan t i t i e s  i n  complex form in order 
t o  s a t i s f y  t h e  phase r e l a t ions  imposed by equations (E) t o  (B8). However, 
physical  s ign i f icance  i s  t o  be at tached only t o  t h e  r e a l  par t  of disturbance 
quant i t ies .  

Dimensionless var iab les  a r e  introduced by choosing reference quan t i t i e s  i n  
conformity with those  used i n  ca lcu la t ing  t h e  bas ic  flow as follows: 

Length: 

Velocity: 

X 

Temperature : 

where 

Tw - T, E A!T 

Gr = gp* m x 3  
X 2 

v, 
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The following dimensionless var iab les  are used t o  transform equations 
(B8) i n t o  t h e  dimensionless form: 

(E) ' to  

- 
cp = cpFU* 
- 
s = s m  

c = cu - * 

In terms of t h e  new dimensionless var iables ,  t h e  s t a b i l i t y  equations a r e  obtained 
by subs t i t u t ion  of equations (B10) and (B11) i n t o  equations (B5) t o  (B8);  t h e  
r e s u l t  i s  

2 
(SI' - a s )  i (F' - c ) s  - cpR' = - - 

aRePr 

where t h e  Reynolds number Re i s  defined as Re = 6U*/v = 2fi(Grx)1/4, t h e  
Froude number i s  
Pr = pcp/k. 
respectively,  when t h e  subs t i t u t ion  Fr/B* AT = Re i s  made. 

Fr = ( p ) 2 / g S  = 4v2Grx /gSx  2 , and t h e  Prandt l  number i s  
Equations (B22) and (B23) become i d e n t i c a l  t o  equations (1) and ( 2 ) ,  

Equations (B22) and (B23)  d i f f e r  from t h e  ones given in reference 2 i n  t h a t  
t h e  term s '  i n  equation (B22) i s  mult ipl ied by F$/(Fhax)3. This difference 
i s  due t o  t h e  choice of reference quan t i t i e s  i n  reference 2, which d i f f e r  from 
those of reference 1 used hereinaf ter .  The reference quan t i t i e s  of reference 2 
a r e  as follows: 

Len& h : 

X 

2 2  



Velocity: 
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APPENDIX c 

commroxs TO BE SATISFIED BY EXPONENTIALLY 

DECAYING SOLUTIONS 

The technique used i n  reference 4 i s  used t o  eliminate t h e  a r b i t r a r y  con- 
s t a n t s  i n  equations ( 7 )  and (8) i n  order t o  obtain a s e t  of l i n e a r  and homogene- 
ous r e l a t ions  i n  the  dependent var iab les  of equations (1) and (2 )  and t h e i r  de- 
r iva t ives ,  which a r e  t o  be s a t i s f i e d  a t  t h e  edge of t h e  boundary layer .  

In order t o  s a t i s f y  t h e  boundary conditions (eq. (4)), it is necessary t h a t  
c1 = c3 = c5 = 0. Further, i n  order that t h e  solut ions ( 7 )  and (8) agree with 
t h e  numerical solut ion of equations (1) and ( Z ) ,  which i s  obtained by numerical 
in tegra t ion  when 7 = ve, it i s  necessary tha t  

where t h e  l e f t  s ides  of equations (Cl) t o  ( C 6 )  a r e  obtained from t h e  numerical 
in tegra t ion  of equations (1) and ( 2 )  from 7 = 0 t o  7 = qe. Solution of equa- 
t i o n s  ( C l )  t o  ( C 6 )  gives t h e  e ' s .  Since 
nant s t h a t  give 

c1 = c3 = c5 = 0, t h e  th ree  determi- 
cl, c3, and c must vanish. Hence, 5 
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1 1 1  1 cp 1 

a -a p - p  cp' -.Y- 

2 a2 a2 p2 p2 cp" Y 

a -a p3 - p  c p l ' l  -Y 3 3  3 3 

1 1 1  1 cp 1 

a -a p - p  cp' -Y- 

2 a2 a2 p2 p2 cp" Y = o  = o  

Equations ( C 7 )  t o  ( C 9 )  reduce to 

= 0 (c7) 

= 0 ( C 8 )  
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5' + ys = 0 ( c12 1 
Equations (C10) t o  ((212) a r e  the conditions that the numerical so lu t ion  m u s t  sat- 
i s f y  a t  t h e  edge of t h e  boundary l aye r  at It is convenient t o  eliminate 
s' from equations ( C 1 0 )  and (C11) by means of equation (C12). This leads t o  the 
somewhat simpler conditions t h a t  w i l l  be employed instead of equations (Cll) 
and (ClO), respectively,  namely, 

q = qe. 

s = o  2 2 q'" - a, cp' + p(cp" - a c p )  + L r + P  

s = o  qf" + ucp" - p 2 (9' - acp) + T+a 

It is c lea r  that, i f  equations ( C 1 2 )  t o  (C14) a r e  satisfied, then so  a r e  equa- 
t i o n s  (C10) and ((211). 
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TABLE I. - FUNCTIONS F AND H AND DERIVATIVES 

FOR P R A "  NUMBER OF 6.7 

H 

1.0000 
.e700 
-7412 
-6162 
-4986 

.3919 
-2989 
-2212 
.1588 

.1107 

.0751 
-0496 
.0319 
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71 
0. 

.125C 
-250C 
.375c 
.500C 

.625C 

.7SOC 

.875C 
1. oooc 
1.125C 
1.250C 
1.3750 
1.500C 

1.6250 
1.7500 
1.8750 
2.0000 

2.1250 
2.2500 
2.3750 
2.5000 

2.6250 
2.7500 
2.8750 
3.0000 

3.1250 
3.2500 
3.3750 
3.5000 

3.6250 
3.7500 
3.8750 
4.0000 

4.1250 
4.2500 
4.3750 
4.5000 

4.6250 
4.7500 
4.8750 
5.0000 

5.1250 
5.2500 
5.3750 
5.5000 

5.6250 
5.7500 
5.8750 
6.0000 

6.1250 
6.2500 
6.3750 
6.5000 

6.6250 
6.7500 
6.8750 
7.0000 

7.1250 
7 -2500 
7.3750 
7.5000 

8.1250 .2777 

I8.375oI 8.2500 .2778 .27781 

,2774 
.2775 

18.50001 -27781 

.oooo 

.oooo 

.oooo 

.oooo . 0000 . 0000 

.oooo . 0000 

.oooo 

.oooo 

.oooo 

.oooo 

.oooo 

.oooo 

.oooo . 0000 

.oooo 
f 0000 

.oooo . 0000 . 0000 

.oooo 

.oooo 

.oooo 
* 0000 
.oooo 

-. 

F 
-~ 
). 
-003: 
.011€ 
.0241 
.038€ 

.054€ 

.071E 

.088C 
-1041 

.1194 

.133E 
,147: 
.159: 

.1707 
-181C 
.1904 
.1986 

.206E 

.213E 

.22oc 

.2257 

.2309 

.2355 

.2397 

.2436 

-2.170 
.2501 
.2529 
.2554 

.2577 
.2597 
-2616 
.2633 

-2648 
.2661 
.2673 
.2684 

.2694 
.2703 
-2711 
.2718 

.2725 

.2731 

.2736 

.2741 

.2745 

.27.19 

.2752 

.2755 

.2758 

.2760 

.2763 

.2765 

.2766 

.2768 

.2769 
,2771 

,2772 
,2773 

- 

F' 

1. 
-049, 
.085: 
.lo91 
.124, 

.13M 

.133! 

.131: 

.125! 

,118: 
.111( 
.lo21 
.094: 

.OB62 

.078f 

.071< 

.064€ 

.058i 
-0535 
.0481 
.043E 

.039: 

.035: 

.0321 

.0285 

.0261 

.O23€ 

.021: 
-0192 

-017: . Ol5f 
.014C 
.0127 

-0114 
.0101 
.0092 
.0089 

.0075 

.0068 
-0061 
-0055 

.0049 

.0044 
.0040 
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.002 6 
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.0017 
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.0013 
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.0009 
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,0006 
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.0003 
,0002 
,0002 

F" 

0.454 
.337 
.237 
.154 
.086 

.034 -. 004 -. 032 
-. 050 

-. 060' 
-. 065' 
-. 067 
- .065! 

-. 0631 
-. 059: -. 055: -. 0501 

-. 0461 
- .042! 
- .038' 
- .035: 

- .0311 
-.028L 
-. 026: 
- .023: 

-. 021: 
-. 0191 
-. 017: 
-.  015: 

- .014: 
- . 012: -. O l l i  
-. 010: 
-. 009: -. 008E 
-. 007; 
-.  007( 

-. 0062 
-.  0057 -.  0051 -. 004E 

- . 0042 
. . 003E 
. .0034 
. .0031 

-. 0028 
-. 0025 
-.  0022 
- .002c 

-. 0018 
-. 0016 
. .0015 
. .0013 

. .0012 
-. 0011 
-.  0010 
. ,0009 

. .0008 
- .0007 
. .0006 
. .0006 

. .0005 

. .0005 

. .0004 

. .0004 

.0003 

.0003 
' .  0003 
. .0003 

F"' 

-1.0001 -. 868. -. 735: 
- .603: -. 477' 

-. 3621 -. 262: 
-.178: -. 111! 
-. 060' 
-. 024( 

.001: 

.017. 

.027: 

.032: 
-034: 
-0341 

.033: 

.0314 

.029: 

.0271 

.024E 

.022€ 

.020€ 

.019c 

.0172 

.0157 

.0142 

.012E 

.0117 . O l O f  

.009 E 

.OO8f  

.007e 

.007 1 

.0064 
-0058 

.0052 
-0047 
-0042 
.0038 

-0035 
.0031 
.0028 
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.0019 
-0017 

-0015 
.0014 
.0012 
.0011 

.OOlO 
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.0004 
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-0002 
.0002 

H' 
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Figure 3. - Eigenfunctions and energy distribution f o r  air 
without temperature fluctuations. Wave number a, 0.4; 
Reynolds number Re, 105; phase velocity cy? 0.1513; 
phase velocity ci, 0. Vertical lines indicate location of 
critical layers. 
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(a) Eigenfunctions. 

(b) Energy distribution. 

Figure 7. - Eigenfunctions and energy distribution f o r  air 
with temperature fluctuations. Wave number a, 0.45; 
Reynolds number Re, 114; phase velocity cy, 0.1616; phase 
velocity e l ,  0.0002. Vertical lines indicate location of 
critical layers. 
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Figure 8. - Elgenfunctions and energy distribution for air 
with temperature fluctuations. Wave number a, 0.15; 
Reynolds number Re, 64; phase velocity cy, 0.2692; phase 
velocity Ci, 0.0001. Vertical lines indicate location of 
critical layers. 
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Figure 9. - Eigenfunctions and energy distribution for air with tempera- 
ture fluctuations. Wave number a, 0.04; Reynolds number Re, 137; 
phase velocity cr, 0.3414; phase velocity ci, 0.0001. 

37 



Phase v e l o c i t y ,  
Cr 

.8 

3-0 .13bO I 

d-- 
/ 

I - 0 C a l c u l a t e d  p o i n t s  o f  p r e s e n t  method I 1 
// - With t e m p e r a t u r e  f l u c t u a t i o n s  . 7  

I I _ _ _  Without  t e m p e r a t u r e  f l u c t u a t i o n s  

\ 
\ I 3 

- 
0 50 100 150 200 250 300 350 400 450 5 00 550 600 

Reynolds number, R e  

F i g u r e  10. - N e u t r a l  c u r v e  f o r  water w i t h  and  w i t h o u t  t e m p e r a t u r e  f l u c t u a t i o n s .  



2 

d 
m 

L O  

3 9 

Lh * -2  

d 9 

L 
9 

m' -4 

*-' 
0 C 

i 2 - 6  
M 
irl 
d 

- .4 

-IC 

1 . k  

m 
@.I 

x 

m . c  2 
0 

P 

-0 
c m 

5 .; 

c 
* Y 

m e .: 

- 
a 

& :  
m 

h u m 

2 -.: 
2 
2 

r( 

-.. 

- . f  

C t l  T I  8. 

.ante from plate, 

(b) Energy distribution 

Figure 11. - Elgenfunctions and energy distrlbution 
for water with temperature fluctuations. 'Xave 
number a, 0.45; Reynolds r,,iber Re, 34; phase 
velocity cy, 0.1556; phase velocity cl, 0. 

NASA-Langley, 1963 E-2172 39  


